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Abstract—The deployment of small (< 1-2 MW) clusters of 

generators, heat and electrical storage, efficiency investments, 
and combined heat and power (CHP) applications (particularly 
involving heat-activated cooling) in commercial buildings 
promises significant benefits but poses many technical and 
financial challenges, both in system choice and its operation; if 
successful, such systems may be precursors to widespread 
microgrid deployment. The presented optimization approach to 
choosing such systems and their operating schedules uses 
Berkeley Lab’s Distributed Energy Resources Customer 
Adoption Model (DER-CAM), extended to incorporate 
electrical  and thermal storage options. DER-CAM chooses 
annual energy bill minimizing systems in a fully technology-
neutral manner. An illustrative example for a hypothetical San 
Francisco hotel is reported. The chosen system includes one 
large reciprocating engine and an absorption chiller providing 
an estimated 11% cost savings and 8% carbon emission 
reductions under idealized circumstances.  
 

Index Terms—buildings, building management systems, 
cogeneration, cooling, cost optimal control, dispersed storage 
and generation, distributed control, optimization methods, 
power system economics, power system planning 

I.  INTRODUCTION 
erein, the working definition of a microgrid is: a cluster 
of electricity sources and (possibly controllable) loads in 
one or more locations that are connected to the 

traditional wider power system, or macrogrid, but which 
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may, as circumstances or economics dictate, disconnect from 
it and operate as an island, at least for short periods [1,2,3,4].  
Note that the key distinguishing feature of a microgrid is local 
control, allowing it to operate as an island, thereby exercising 
control over the power quality and reliability (PQR) delivered 
to end-use devices. 

The successful deployment of microgrids will depend 
heavily on the economics of distributed energy resources 
(DER), in general, and upon the early success of small 
clusters of mixed technology generation, possibly grouped 
with storage, controllable loads, and other potential microgrid 
elements. If clear economic, environmental, and utility system 
benefits from such early projects are realized, momentum can 
propel the adoption of added microgrid capabilities as well as 
precipitate the regulatory adjustments necessary to allow 
widespread microgrid introduction.  

The potential benefits of microgrids are multi-faceted, but 
from the adopters’ perspective, there are two major 
groupings: 1) the cost, efficiency, and environmental benefits 
(including possible emissions credits) of combined heat and 
power (CHP), and 2) the PQR benefits of on-site generation 
and control. Indeed, the economic, electrically stable, and 
safe operation and control of such free-standing, small-scale 
systems create new challenges for electrical engineers.  

At the same time, it should be noted that growth in 
electricity demand in developed countries centers on the 
residential and commercial sectors in which CHP applications 
particularly (and PQR control to a lesser extent) have not 
hitherto been well developed; furthermore, the relative 
absence of attention to CHP and PQR reflects some real 
technical challenges posed by commercial and residential 
applications. 

This paper reports on the latest in a series of efforts 
intended to improve the prospects for successful deployment 
of early microgrid technology in the commercial sector [5], 
and the approach could be applied also to residences. In 
previous work, the Berkeley Lab has developed the 
Distributed Energy Resources Customer Adoption Model 
(DER-CAM), which is described in more detail in the 
appendix [6,7,8]. Optimization techniques find both the 
combination of equipment and its operation over a typical 
year that minimize the site’s total energy bill, typically for 
electricity plus natural gas. The chosen equipment and its 
schedule should be economically attractive to a single site or 
to members of a microgrid consisting of a cluster of sites, and 
it should be subsequently analyzed in more engineering and 
financial detail. In this work, electrical and thermal storage is 
added as an option to the prior menu of technology choices, 
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and this capability is demonstrated by the analysis of a 
prototypical San Francisco hotel.  

II.  DER IN BUILDINGS 
The importance of the commercial sector in electricity 

consumption in developed countries can be seen by three 
multiplicative factors. 1. The share of all energy being 
consumed as electricity increases, e.g. in the U.S. from 13% 
in 1980 to about 20% today. 2. The commercial sector uses a 
growing share of all electricity, e.g. in the U.S. from 27% in 
1990 to 35% in 2005. And 3., typically an increasing share of 
electricity is generated thermally as carbon-free hydro sources 
are fully exhausted, although the shares of carbon-free 
nuclear vary widely across grids. The product of these factors 
means the carbon footprint of commercial buildings can grow 
rapidly, but changes in the fuel mix, e.g. more natural gas 
fired generation, can also have a big effect. Further, in warm 
climates such as most of the U.S. and Japan, and for an 
increasing share of Europe, commercial-sector cooling is a 
key driver of peak load growth, and hence, the stress to and 
investment in the macrogrid. Consequently, deployment of 
DER in buildings, especially CHP technologies for cooling, is 
central to containing the growth of electricity consumption 
and its associated carbon emissions.  

Yet, despite the importance of DER in the commercial 
sector, current analysis of DER implementation in buildings 
is limited. System sizing often relies on heuristic rules based 
on the relative size of heat and electricity requirements. 
Furthermore, the detailed building energy modeling that is 
frequently done during building design to assist in the 
selection of energy systems relies on quite limited programs 
[9]. Their on-site generation capability is often limited to 
modeling a few generation sources, such as photovoltaic 
panels (PV), and possibly some heat recovery devices. And,  
typically, the usefulness of the analysis rests heavily on user 
capability and motivation. Although DER can offer a variety 
of economic, environmental, and remote macrogrid benefits, 
such as enhanced demand response, the lack of DER 
assessment tools is a major hurdle to widespread DER 
adoption. Developers are lacking the ability to assess the cost, 
energy use, and carbon and criteria pollutant implications of 
DER options, and their ability to identify optimal equipment 
combinations and operating strategies is limited at best. This 
gap is particularly damaging for DER incorporating CHP 
because equipment selection and operations can be complex 
in building applications, often involving multiple 
technologies, combinations of electricity purchase and self-
generation, and highly varied scheduling to follow the 
occupancy, weather, and other variations in building 
requirements. Consequently, DER with CHP is rarely 
explored for buildings too small to justify specialized 
engineering, e.g. with peak electrical loads approximately 
below the 1-2 MW range, and particularly waste heat driven 
cooling is rarely analyzed, despite the importance of cooling 
to both building requirements and utility system loads in 
warm climates.  

Electrical and/or thermal storage technologies that allow 
desynchronization of electricity generation and heat use in 
building CHP systems are potentially cost effective. They 
permit charging and discharging during periods when each is 
economic, which is obviously potentially beneficial. More 
subtly, storage allows decoupling of the electricity and heat 
balances, with the latter being much more forgiving. For 
example, deviations from target building temperature settings 
for periods of minutes to hours may be acceptable (or at least 
negotiable, given potential cost savings), whereas practically 
speaking, AC electrical systems require a precise energy 
balance at all times. This asymmetry, while it offers potential 
financial motivation, further complicates analysis of building 
CHP systems. Only active storage systems are considered in 
this work, but passive storage, e.g. heat storage in the 
building shell itself, might also provide benefits. Note the 
contrast between building CHP applications with traditional 
(principally industrial) experience. The latter are typically 
applications with favorable balances of heat and electricity 
requirements, and processes operate in a steady state for 
extended periods (preferably from an economic perspective, 
24/7). 

III.  DER-CAM 
DER-CAM solves the commercial building DER 

investment optimization problem given a building’s end-use 
energy loads, energy tariff structures and fuel prices, and an 
arbitrary list of equipment investment options [10]. The 
approach is fully technology-neutral and can include energy 
purchases, on-site conversion, both electrical and thermal on-
site renewable harvesting, and end-use efficiency 
investments. Furthermore, the system choice considers the 
simultaneity of the building cooling problem; that is, results 
reflect the benefit of displacement of electricity demand by 
heat-activated cooling that lowers building peak load and, 
therefore, the generation requirement. Regulatory, 
engineering, and investment constraints are all considered. 
Energy costs are calculated using a detailed representation of 
utility tariff structures and fuel prices as well as amortized 
DER investment costs and operating and maintenance (O&M) 
expenditures. For a specific site, the source of end-use energy 
load estimates is typically building energy simulation using a 
model based on the DOE-2 engine, such as eQUEST, or the 
more advanced, but less user-friendly, EnergyPlus [11,12]. 

The output from DER-CAM is a cost-minimizing 
equipment combination for the building, including CHP 
equipment and renewable sources. The model chooses the 
optimal combination, fully taking the simultaneity of choices 
into account. The results of DER-CAM suggest not only an 
optimal (potentially mixed technology) microgrid, but also an 
optimal operating schedule that can serve as the basis for a 
microgrid control strategy; however, the rigors of 
optimization necessitate simplification of many real-world 
engineering constraints that would in practice necessarily be 
addressed through more detailed engineering analysis and 
system design. 
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Optimal combinations of equipment involving PV, thermal 
generation with heat recovery, thermal heat collection, and 
heat-activated cooling can be identified in a way that would 
be intractable by trial-and-error enumeration of possible 
combinations. The economics of storage are particularly 
complex, both because they require optimization across 
multiple time steps and because of the influence of tariff 
structures. Note that facilities with on-site generation will 
incur electricity bills more biased toward demand (peak 
power) charges and less toward energy charges, thereby 
making the timing and control of chargeable peaks of 
particular operational importance. Similarly, if incentive 
tariffs that share the macrogrid benefits of DER with the 
microgrid are available, then the operational problem is 
further complicated because identifying any potential 
contribution to the macrogrid would likely be intractable 
without optimizing algorithms.  

This paper reports results using recently added electrical 
storage, i.e. a conventional lead/acid battery, and thermal 
capabilities, with both electrical and thermal storage being 
viewed as inventories. At each hour, energy can either be 
added (up to the maximum capacity) or withdrawn (down to a 
minimum capacity to avoid damaging deep discharge). The 
rate at which the state of charge can change is constrained, 
and the state of charge decays hourly. The parameters used 
for the electrical and thermal storage models are shown in the 
following Table 1, where perfect efficiency is assumed in the 
discharge phase. 

  
TABLE 1 

ENERGY STORAGE PARAMETERS 
 

description electrical thermal

charging 
efficiency

portion of energy 
input to storage that is 
useful 0.9 0.9

decay portion of state of 
charge lost per hour 0.001 0.01

maximum 
charge rate

maximum portion of 
rated capacity that 
can be added to 
storage in an hour 0.25 0.25

maximum 
discharge rate

maximum portion of 
rated capacity that 
can be withdrawn 
from storage in an 
hour 0.25 0.25

minimum 
state of 
charge

minimum state of 
charge as a portion of 
rated capacity 0.3 0  

IV.  SAN FRANCISCO HOTEL EXAMPLE 
An example analysis was completed of a prototypical San 

Francisco hotel operating in 2004. This hypothetical facility 
has 23 000 m2 of floor space and a peak total electrical load 
of 690 kW. Figures 1 through 4 indicate heating and 
electricity end-uses during typical January and July week 
days.  Table 2 shows the prices used, which are based on 

local Pacific Gas and Electric (PG&E) rates obtained from the 
Tariff Analysis Projects database [13]. Here, the summer 
months are June through September, inclusive, and the hours 
are classified as follows:  during the summer, 1000-1900 are 
on-peak during week and peak days, and the rest are off-peak, 
while during the winter, 0900-2200 are on-peak and the rest 
are off-peak.  All hours during holidays and weekend days 
are off-peak hours.  Natural gas prices (shown in two units) 
for the region were obtained from the Energy Information 
Administration web site [14]. A marginal carbon emission 
factor of 140 g/kWh for electricity purchased from PG&E 
was assumed, whereas the efficiency of macrogrid electricity 
generation was assumed to be 0.34  [15].  The solar insolation 
profile for the solar thermal unit is indicated in Figure 5, 
which is a fraction of the theoretical maximum that the PV 
panel could output under test conditions. 

The menu of available equipment options to DER-CAM 
for this analysis together with their cost and performance 
characteristics is shown in Table 3. While the current set of 
technologies is for convenience, any candidate technology 
may be included.  Technology options in DER-CAM are 
categorized as either discretely or continuously sized. This 
distinction is important to the economics of DER because 
equipment becomes more expensive in small sizes. Discretely 
sized technologies are those that would be available to 
customers only in a limited number of discrete sizes, and 
DER-CAM must choose an integer number of units, e.g. 
microturbines. The costs for the discrete technologies are 
interpolated from various studies as described in [16], which 
is based on data collected by the National Renewable Energy 
Laboratory [17].  Continuously sized technologies are 
available in such a large variety of sizes that it can be 
assumed capacity close to the optimal could be acquired, e.g. 
battery storage, the costs for which are roughly consistent 
with those described by the Electricity Storage Association 
[18]. The installation cost functions for these technologies are 
assumed to consist of an unavoidable cost (intercept) 
independent of installed capacity ($) representing the fixed 
cost of the infrastructure required to adopt such a device, plus 
a variable cost proportional to capacity ($/kWh). Finally, the 
carbon emission factor for each DG unit is calculated by 
dividing the natural gas emission factor of 49 g/kWh by the 
appropriate higher heating value (HHV) efficiency.  For 
example, the carbon emission factors are 197 g/kWh and 187 
g/kWh for the 60 kW and 100 kW microturbines, 
respectively, and 167 g/kWh and 166 g/kWh for the 200 kW 
and 500 kW reciprocating engines, respectively. 
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Heating End-Use Loads for a January Week Day
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Fig. 1. Heating end-use loads for a January week day 

Electricity End-Use Loads for a January Week Day
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Fig. 2. Electricity end-use loads for a January week day 

Heating End-Use Loads for a July Week Day

0

20

40

60

80

100

120

140

1 5 9 13 17 21

Hour

Th
er

m
al

 P
ow

er
 (k

W
)

Space-Heating Load Water-Heating Load
 

Fig. 3. Heating end-use loads for a July week day 

Electricity End-Use Loads for a July Week Day
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Fig. 4. Electricity end-use loads for a July week day 

 
 
 

TABLE 2 
INPUT ENERGY PRICES  

Electricity

electricity 
($/kWh)

demand 
($/kW)

electricity 
($/kWh)

demand 
($/kW)

all hours 2.55 2.55
on-peak 0.17 11.80 0.11 0.00
off-peak 0.09 0.00 0.09 0.00

Natural Gas
0.03 $/kWh
0.94 $/therm

summer winter

 
 

Avg. Fraction of Max. Solar Insolation under Test Conditions 
(1000 W per square meter)
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Fig. 5. Solar insolation profile 

 
TABLE 3 

MENU OF AVAILABLE EQUIPMENT OPTIONS 
Discrete Investments

fuel 
cell

capacity (kW) 200 60 100 200 500
installed cost 

($/kW) 5005 1826 1576 900 785
installed cost 

with heat 
recovery 

($/kW) 5200 2082 1769 1250 1050
variable 

maintenance 
($/kWh) 0.029 0.015 0.015 0.015 0.012

efficiency 
(LHV) 0.35 0.25 0.26 0.295 0.297

lifetime (a) 10 10 10 20 20

Continuous Investments
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fixed cost ($) 295 10,000 20,000 1,000 1,000
variable cost 

($/kW or 
$/kWh) 193 100 115 150 4,240

reciprocating 
enginemicroturbine
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From the data, DER is not necessarily more energy or 
carbon efficient than central station generated power bought 
from the grid. For example, simple cycle on-site generation of 
electricity using reciprocating engines at this site would be 
more carbon intensive than procurement from PG&E; 
however, using waste heat to offset thermal or electrical loads 
can improve the overall carbon efficiency. Because incentive 
payments are usually motivated by efficiency or carbon 
abatement objectives, qualifying constraints on minimum 
DER efficiency are often imposed. Although California has 
these, they are not applied in this analysis. 

 
TABLE 4 

ANNUAL RESULTS 

do
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to
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equipment investment
reciprocating 
engines (kW) 1x500 1x200 1x200
absorption 
chiller (kW) 531 585 585

solar thermal 
collector (kW) 642 642

electrical 
storage (kWh) 763

thermal 
storage (kWh) 176
annual costs (k$)

electricity 427 100 202 228
NG 33 229 136 127
DG 0 78 62 52

total 459 408 400 407
% savings 11.2% 12.8% 11.3%

annual energy consumption (GWh)
electricity 3.67 0.95 1.87 1.98

NG 0.98 7.85 4.65 4.33
annual carbon emissions (t/a)

emissions 562 520 491 492
% savings 7.4% 12.7% 12.6%

system energy efficiency
efficiency 0.38 0.42 0.44 0.44  

V.  RESULTS 
Four DER-CAM runs were performed: 1. A do nothing 

case in which all DER investment is disallowed, i.e. the hotel 
meets its local energy demands via off-site purchases. 2. An 
invest run, which finds the optimal DER investment. 3. A low 
storage price run by reducing the cost to initiate storage 
adoption. 4. Finally, to assess the value of storage systems, a 
run was performed forcing the same investments as in the low 
storage price case, but in which storage is disallowed.  

The major results for these four runs are shown in Table 4. 
In the do nothing case, the hotel meets all of its electricity 
demand via utility purchases and burns natural gas to meet all 
of its heating demand at an overall system energy efficiency 

of 0.38.  The annual operating cost is $459 000, and 562 t of 
carbon are emitted each year.  The optimal system consists of 
a large gas engine and an absorption chiller. Relative to the 
do nothing case, the expected annual savings for the optimal 
DER system are $51 000/a (11.2%) and the elemental carbon 
emissions reduction is 42 t/a (7.5%).   By running DER-CAM 
for various load data, tariff structures, and candidate 
technologies, it is possible for a microgrid to construct an 
optimal DER investment plan.  For example, we ran three 
cases, each with a slightly different optimal portfolio of 
equipment.   

 

 
Fig. 6. Low storage price diurnal heat pattern for a January week day 

 
Fig. 7. Low storage price diurnal electricity pattern for a January week day 

 
Fig. 8. Low storage price diurnal heat pattern for a July week day 
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Fig. 9. Low storage price diurnal electricity pattern for a July week day 

 
 In the low storage price case, both avoidable electrical and 

thermal storage costs are set to zero plus a $40/kWh variable 
cost. Compared to the invest case, a more complex DER 
system results in which some generation capacity is replaced 
by storage and solar thermal collection, but the annual costs 
are reduced to 12.8% below the do nothing case, which is a 
small improvement relative to the invest case. In other words, 
the added value of the storage and other complexity is very 
modest in this example.  An explanation for this is that 
storage can take advantage of both economic and temporal 
inefficiencies, i.e. by charging the battery via utility purchases 
during off-peak hours and then consuming the stored power 
during on-peak hours.  However, since the latter are small 
relative to the cost of storage (even in the low storage price 
case), the additional cost savings are not very high beyond 
those that are already captured by the CHP-enabled generator, 
which is also able to run during on-peak hours to offset the 
cooling electric load via the absorption chiller.  Nevertheless, 
the impact on carbon emissions is greater as they are reduced 
by 12.7% in the low storage price case as compared to only 
7.5% in the invest case.   In order to estimate a value for 
storage, we perform a run with low storage prices, but no 
storage allowed (force low storage price) while a solar 
thermal unit is still permitted.  We find that the presence of 
storage increases savings to 12.8% whereas they are 11.3% 
without it. 

There is a large difference between the DER systems in the 
last three cases and yet only minor difference in their energy 
cost, which suggests a flat objective function near the 
minimum. It is also likely that results would be sensitive to 
factors not considered in this analysis, such as risk and site 
configuration. Please also note that these results are estimated 
assuming perfect reliability of DER equipment. Imperfect 
reliability would mostly directly affect the demand charges, 
but would also have other effects on the value of the project 
to the site, e.g. on the standby charge as back up to DER 
would have to be provided by the utility.  

Besides the optimal investment plan, DER-CAM provides 
the microgrid with an optimal schedule for each installed 
technology, which we illustrate using the low storage price 
case.  The graphics in Figures 6 through 9 above show 

example DER-CAM operating results for the thermal and 
electrical balances of the hotel on typical days in January and 
July 2004. Note that the optimal technologies are a 200 kW 
reciprocating engine, a 585 kW (166 refrigeration tons) 
absorption chiller, 642 kW of solar thermal collectors, 763 
kWh of electrical storage, and 176 kWh of thermal storage. 
While the economics of this case are not compelling, even 
with subsidized storage, it is presented in detail to 
demonstrate the scheduling capability of DER-CAM. 

The area underneath the solid red line in these figures is the 
hourly energy demand, whereas the area above the solid red 
line indicates storage charging. The various patterns in the 
graphs indicate the source of the energy. For electrical loads 
(Figures 7 and 9) the lower black profile indicates the portion 
of the electric load that can be met by only electricity, 
whereas the solid red line above it is the total electric load, 
including cooling. During off-peak hours, the microgrid 
purchases cheap power from the utility to charge the battery 
and then consumes the stored power during on-peak periods 
when utility purchases are relatively expensive.  Note that 
since electric cooling loads can be offset by the absorption 
chiller, there are four possible ways to meet cooling loads:  
utility purchases of electricity, on-site generation of 
electricity, absorption chiller offsets, and stored electricity in 
batteries.  By finding the optimal combination for each hour 
of the test year, DER-CAM provides the microgrid with an 
optimal operating schedule for each of its installed 
technologies. For thermal loads (Figure 6 and 8), the lower 
line indicates the heat required for heating, whereas the solid 
red line indicates the total thermal load, including heat 
required for the absorption chiller. 

VI.  CONCLUSIONS 
Limiting the growth of electricity consumption in 

commercial buildings is particularly important for carbon 
abatement in developed countries. Unfortunately, the 
promising approach of deploying CHP (especially cooling) 
technology faces major challenges. Use of better building 
energy analysis and design tools can accelerate the adoption 
of CHP, and thus facilitate deployment of microgrids 
nationally that can additionally deliver PQR benefits [19]. 
Both thermal and electrical storage capability have been 
added to DER-CAM, thereby making it a more useful 
optimization tool for on-site generation selection and 
operation. The new capabilities have been demonstrated by 
an analysis of a prototypical San Francisco hotel. Results 
show the wide range in complexity of optimal systems and 
the likely carbon emissions reductions.  It should be noted 
that although the example demonstrated herein has primarily 
focused on the optimal choice of investments, optimization of 
run-time operational schedules are implicit in the method, and 
examples are reported as figures. 

Incorporation of electrical storage into DER-CAM will 
facilitate analysis of emerging transportation technologies. 
For example, the adoption of plug-in hybrids as personal 
transportation, with their on-board electrical storage offer an  
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on-site load leveling opportunity at minimal additional 
investment with potential for additional reduction in carbon 
emissions. Note that payments for the storage capability of 
vehicles, as well as for other possible services, such as rapid-
response load following, could make the economics of such 
transportation modes more favorable and accelerate their 
deployment. The integration of such features into DER-CAM 
is a promising topic for further investigations.       

VII.  APPENDIX 
DER-CAM identifies optimal technology-neutral DER 

investments and operating schedules at a given site based on 
available DER equipment options and their associated capital 
and O&M costs, customer load profiles, energy tariff 
structures, and fuel prices. The Sankey diagram in Figure A1 
shows partially disaggregated site end-uses on the right-hand 
side and energy inputs on the left. As an example, the 
refrigeration and cooling load may be met in one of multiple 
ways, including standard electrically powered compressor 
cooling, direct fire or waste heat activated cooling, or direct 
gas engine powered compressor cooling (not included in the 
hotel example analysis above). DER-CAM solves this entire 
problem optimally and systemically. Figure A2 shows a high 
level schematic of inputs to and outputs from the model. 

 

 
Fig. A1. Energy flows in buildings from fuels to end uses 
 

 
Fig. A2. High level schematic of the inputs and outputs of DER-CAM 

 
DER-CAM is particularly suited to evaluating combined 

heat and power (CHP) opportunities since it selects the 
optimal combination of DER investment options, fully taking 

their interdependence into account, e.g. if there is a tradeoff 
between thermally activated cooling and on-site generator 
capacity, DER-CAM obtains the combination of the two that 
minimizes cost. Thus, optimal combinations of equipment 
involving PV, thermal generation with heat recovery, solar 
thermal collection, and thermally activated cooling can be 
identified in a way that would be intractable by trial-and-error 
testing of all possible combinations.  

DER-CAM is implemented as a mixed-integer linear 
program in the General Algebraic Modeling System (GAMS) 
using the CPLEX solver. A high level description of the 
model logic is shown in Figure A3. Siddiqui et al. provides a 
more detailed description [8].  
 

MINIMIZE 

Annual energy cost:
energy purchase cost 

+ amortized DER technology capital cost 

+ annual O&M cost

SUBJECT TO

Energy balance:
- Energy purchased + energy generated exceeds demand

Operational constraints:
- Generators, chillers, etc. must operate within 

installed limits

- Heat recovered is limited by generated waste heat 

Regulatory constraints:
- Minimum efficiency requirements
- Maximum emission limits

Investment constraints:
- Payback period is constrained

Storage constraints:
- Electricity stored is limited by battery size
- Heat storage is limited by reservoir size

 
Fig. A3. Optimization problem solved by DER-CAM 
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